انواع توربین  آبی 1

 

 
انوانع توربین آبی 1

 

برای مشاهده به ادامه مطلب مراجعه نمایید


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

ادامه مطلب
تاريخ : پنج شنبه 30 خرداد 1392برچسب:انواع توربین آبی 1,توربین,آبی, سرعت, تنظیم,سد, | 14:16 | نویسنده : علیرضا زینالپور |

انواع توربین آبی 2

 

انواع توربین آبی 2

 قبلا خواندید...

توربین کاپلان  (Kaplan Turbine)

توربین کاپلان اساساً برای سدهای با ارتفاع کم بوده و بنابراین همانند توربین فرانسیس برای داشتن خروجی مناسب، نیاز به مقدار زیادی آب برای چرخش دارد. این توربین واکنشی است و مثل توربین فرانسیس دارای مكانیزم ورود و جمع آوری آب می باشد، با این تفاوت که در توربین فرانسیس آب به صورت شعاعی وارد می شود اما در توربین کاپلان ورود آب به صورت محوری به پره ها می خورد.

 

 

انواع توربین آبی 2

 

 

در توربین کاپلان تنها 3 الی 6 پره وجود دارد که باعث کاهش مقاومت اصطكاک می شود. توربین کاپلان معمولا دارای کانال های ورودی و خروجی آب است. چون ارتفاع سد کم است نیاز به مقدار متناهی آب برای چرخش توربین است.

برای هدایت مقدار زیاد آب به قسمت محرک توربین دیواره های پوشش مارپیچ که در تماس با پره های هدایت کننده هستند به صورت دو دیوار منحنی شكل ساخته می شوند. راندمان توربین کاپلان در تمامی حالات 90 درصد می باشد.

توربین پروپلر  (Propeller Turbine)

این توربین طوری طراحی شده است که محرک آن با آب به صورت محوری در تماس بوده و در آن زاویه پره ها در هنگام حرکت تغییر نمی یابد. ساختمان قسمت محرک آن طوری است که پره ها به صورت قالب بر روی یک توپی مستقر شده اند. راندمان این توربین در بار کامل 92 % و در نصف بار کامل 65 % است. چنین توربین هایی دارای منحنی راندمان پیک می باشند.

 

 

انواع توربین آبی 2

 

توربین کاپلان

 

مقایسه توربین های کاپلان و فرانسیس

1- توربین کاپلان از نظر ساختمان بسیار متراکم  بوده و دارای سرعت دورانی بالا می باشد.

2- راندمان توربین کاپلان در بارهای کسری زیاد است.

3- جریان آب در توربین کاپلان کاملاً محوری و آسان بوده در حالی که در توربین فرانسیس جریان آب شعاعی و نسبتا مشکل است.

4- مقدار پره ها در توربین فرانسیس 16 عدد بوده در حالی که در توربین کاپلان فقط 4؛ 5 یا 6 عدد است.

5- کاهش مقدار پره ها در توربین کاپلان باعث کاهش اصطکاک مابین پره های آب شده و در نهایت افزایش راندمان را در پی دارد.

6- در توربین کاپلان پره های بر روی توپی یا بدنه محافظت می شوند.

7- با در نظر گرفتن ارتفاع سد ثابت سرعت توربین های کاپلان و  پروپلر 2 الی 3 بار بیشتر از توربین فرانسیس می باشد. برا این اساس قطر قسمت محرک قابل افزایش بوده ولی به دلیل تولید انرژی و خروجی بیشتر از تعداد چرخ  های توربین پرهیز می شود.

ارتباط ارتفاع سد با سرعت توربین

برای هر نوع توربین و سد مربوطه رابطه مشخص برای ارتفاع سد نسبت به توربین نیروگاه وجود دارد.

منحنی های زیر چنین رابطه ای را نشان می دهد و برای مطالعات اولیه و انتخاب های مقدماتی مفید می باشند. منحنی ها نشان می دهند که توربین Pelton  در ارتفاعات90  متر تا 1100 متر و در سرعت 10  تا 40  دور بر دقیقه (r.p.m) مناسب می باشد.

برای توربین فرانسیس ارتفاع 14 تا 300  متر و سرعت 95 تا 440  دور بر دقیقه مناسب است

برای توربین کاپلان ارتفاع 3 تا 30  متر و سرعت 550 تا 830  دور بر دقیقه مناسب است.

 

انواع توربین آبی 2

 

انواع توربین آبی 2

 

انواع توربین آبی 2

 

مقایسه بین انواع مختلف توربین ها

 

 

سرعت rpm

ارتفاع m

Classification

توربین

10-40

90-1100

ضربه ای

Pelton

400 - 95

300 - 14

واکنشی

Francis

830 - 550

30 - 3

واکنشی

Kaplan

 

حباب ها  (Cavitations)

با ارسال آب به سمت توربین ها توسط لوله ها و چرخش توربین، آب به مسیر برگشتی خود ارسال می شود.

اگر در هر نقطه ای فشار آب به حد فشار بخار برسد، بسته های بخار یا حباب ها تشکیل می شود که در مسیر عبور آب حرکت می کنند و این کار باعث افزایش فشار بخار و متراکم شدن بخار می شود.

معمولاً چنین عملکردی باعث می شود تا شکست سیال اتفاق افتاده و در اثر ضربه آب و نویز صدا تولید می گردد. فشار آب همچنین باعث صدمه رسیدن به سطوح مورد تماس یافته با آب می شود. در عمل ملاحظه می شود که معمولاً در نقاط زیر حفره تشکیل می شود:

1- قسمت های فوقانی دیواره های لوله

2- قسمت های تحتانی سطل های توربین پلتن

3- در نزدیکی نوک شیرهای توربین های ضربه ای

4- در گوشه های تیز سطوحی که تولید حباب می کنند

 

با روش های زیر می توان از تشکیل حباب جلوگیری کرد:

1- با ایجاد انحنا (خمیدگی) ملایم در مسیر جریان آب

2- استفاده از خاصیت مقاومت مواد در عبور سیال

3- استفاده از مسیرهای فلزی در جاهائی که امکان وجود حباب وجود دارد.

4- کاهش میزان فشار در قسمت محرک توربین (در انتهای قسمت برگشتی آب)

 


برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:انواع توربین آبی 2, | 14:14 | نویسنده : علیرضا زینالپور |

 

بازیافت كاغذ

بازیافت کاغذ

مقدار مواد آلوده جامد در رودخانه ها چقدر است ؟

در اطراف كلاس درس مدرسه خود نگاه كنید چه می بینید ؟

پوستر؟ دفتر؟ دفتر مشق؟ مجله با تعداد زیادی صفحه؟ شما تصاویر را به دست می آورید. كاغذ در هر جایی است!

كاغذ ماده ای است كه ما آن را یک بار مصرف می كنیم. 14 درصد زباله ها، زباله های و 15 تا 20 درصد ؟ آن زباله های کاغذهای متراكم شده است.

 

بازیافت کاغذ

كاغذ اشكال مختلفی دارد. براق یا كدر، ضخیم یا نازک. كاغذ می تواند پر كننده روزنامه یا پر كننده پوشک بچه باشد. بیشتر كاغذ تولیدی از درختانی كه قطع شده و برش داده شده اند، تهیه می شود. البته می توان كاغذ را از پارچه های قدیمی یا علف نیز تهیه کرد.

 

كاغذ بازیافتی

كاغذ باز یافتی از كاغذ باطله تشكیل شده است که معمولاً با خمیر چوب تازه مخلوط شده است. توجه داشته باشید که برای بازیافت کاغذ، كاغذ بایستی بدون جوهر شود.

 

امروزه تقریباً هر نوع كاغذی می تواند باز یافت شود. اما بازیافت بعضی از انواع آن نسبت به دیگری سخت تر است. كاغذ هایی كه براق، خمیری یا چسبنده هستند باز یافت نمی شوند زیرا فرآیند آن خیلی پر هزینه است. هنگام بازیافت كاغذها بایستی از هم دیگر جداشود. شما نباید روزنامه و جعبه های مقوایی را با همدیگر برای باز یافت مخلوط كنید.

بازیافت کاغذ

درجات مختلف كاغذ به انواع مختلف تولیدات جدید قابل بازیافت هستند. روزنامه های قدیمی معمولاً به كاغذ روزنامه های جدید، كارتون های تخم مرغ، كارتون های مقوایی قابل تبدیل است. كاغذ دفتر سفید درجه بالا تقریباً می تواند به هر تولید كاغذ جدیدی تبدیل شود: بلیط، كاغذ روزنامه یا كاغذ مجله و کتاب ها. گاهی اوقات بازیافت كننده ها ضمیمه های براق روزنامه ها را از شما درخواست می كنند. كاغذ روزنامه و ضمیمه های براق جزء انواع مختلف كاغذ هستند.

 

كاغذ بر خلاف دیگر باز یافتی ها نمی تواند بیشتر وبیشتر بازیافت شود. دلیل این است كه معمولاً وقتی كه تولیدات كاغذی جدید تشكیل می شوند، رشته های كاغذ دست نخورده، با كاغذ باز یافتی مخلوط می شوند. بیشتر جعبه های مقوایی تركیبی از 50 در صد رشته های جدید و 50 در صد رشته های باز یافتی هستند.

 

 

بازیافت کاغذ

 

 

باز یافت كاغذ چه مقدار انرژی ذخیره می كند؟

بازیافت كاغذ انرژی ذخیره می كند اگر چه انرژی ذخیره شده آن نسبت به انرژی بازیافتی آلومینیوم و فولاد قابل مقایسه نمی باشد. با این حال یک كارخانه كاغذ كه كاغذ بازیافتی می سازد 20 درصد انرژی کمتری نسبت به كارخانه ای كه كاغذ را از الوار تازه می سازد، مصرف می كند. كارخانه های كاغذ مقدار زیادی از انرژی شان را از چوب های پس مانده و باطله تولید می كنند اما كارخانه های بازیافتی بیشتر انرژی شان را از شركت های انرژی محلی یا استفاده از وسایل تولید درب تآمین می كند.

تشكیل كاغذ باز یافتی، نسبت به کاغذی که 100 درصد از مواد اولیه ساخته می شود، ‌نیاز کمتری به سفید شدن و شیمیایی شدن دارد. هم چنین با بهبود این كاغذ های باز یافتی آلودگی کمتری خواهیم داشت. البته هر دو فرآیند محصولات فرعی مختلفی تولید می كنند.

كارخانه های كاغذ ممكن است دی اكسید سولفور بیشتری منتشر کند. اما كارخانجات باز یافتی ممكن است گل بیشتری تولید كنند.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:بازیافت كاغذ, | 19:11 | نویسنده : علیرضا زینالپور |

انواع شناساگرها و کاربرد آن ها

انواع شناساگرها و کاربرد آن ها

شناساگرها مواد رنگی است که معمولا از مواد گیاهی گرفته می‌شوند و می‌توانند به شکل اسیدی یا بازی باشند. شناساگرها برای شناسایی اسیدها و بازها به ما کمک می‌کنند.

برای تعیین نقطه پایان در حین تیتر کردن از ترکیبات شیمیایی مشخص استفاده می‌شود که در نزدیکی نقطه تعادل در اثر تغییر غلظت مواد تیترشونده شروع به تغییر رنگ می‌کنند. این ترکیبات رنگی، شناساگر می‌باشند. به عبارتی دیگر، شناساگرها  مواد رنگی هستند که رنگ آن ها در محیط اسیدی و قلیایی با هم تفاوت دارد.

 

 کاربرد شناساگرها

یکی از ساده ترین راه تخمین کمی PH ، استفاده از یک شناساگر است. با افزودن مقدار کمی از یک شناساگر به یک محلول، تشخیص اسیدی یا بازی بودن آن ممکن می‌شود. در صورت مشخص بودن PH، تغییر شناساگر از یک شکل به شکل دیگر ، با توجه به رنگ مشاهده شده، می‌توان تعیین کرد که PH محلول کم‌تر یا بیشتر از این مقدار است. شیمیدان‌ها از این گونه مواد برای شناسایی اسیدها و بازها کمک می‌گیرند.

 

شناساگرهای زیادی وجود دارد که معروف ترین آن ها لیتموس (تورنسل) است که در محیط اسیدی، قرمز، در محیط بازی، آبی و در حدود خنثی بنفش رنگ است. تغییر رنگ آن در نزدیکی PH برابر 7 رخ می‌دهد. در هر حال تغییر رنگ ناگهانی نیست. فنل فتالئین، معرف دیگری است که بیشتر برای بازها قابل استفاده است. این ماده جامدی سفید رنگ است که در آزمایشگاه محلول الکلی آن را به کار می‌برند. این محلول در محیط اسیدی بی رنگ و در محیط قلیایی رقیق ارغوانی است.

 

می‌توان از آب کلم سرخ یا انواع گل های سرخ مثل شقایق و رز سرخ نیز به‌عنوان یک شناساگر اسید و باز استفاده کرد. از آمیختن شناساگرهای مختلف با یکدیگر نوار کاغذی به دست می‌آید که با یک مقیاس رنگ مقایسه‌ای همراه است و برای اندازه گیری‌های تقریبی PH به طور گسترده کاربرد دارد.

 

 

انواع شناساگرها و کاربرد آن ها
 
 انواع شناساگرها

در اینجا به معرفی دو نوع شناساگر داخلی و خارجی می پردازیم:

1. شناساگر داخلی: اگر به محلول تیتر شونده، چند قطره از یک شناساگر افزوده شود و پس از پایان عمل تغییر رنگ در محلول ایجاد شود، چنین شناساگری را شناساگر داخلی یا درونی نامند.

 

2. شناساگر خارجی: در برخی حالات، قبل از آن که نقطه پایان به ظهور برسد، بین شناساگر و محلول تیتر شونده یک واکنش صورت می‌گیرد و در این حالت نقطه پایان بسیار سریع پدیدار می‌شود، مثل تیتر کردن فسفات با استات اورانیل در حضور شناساگر فروسیانور پتاسیم، فروسیانور پتاسیم با یون های اورانیل قبل از رسیدن به نقطه پایان واکنش می‌دهد.

 

برای به دست آوردن نتیجه صحیح و خوب باید به دفعات لازم چند قطره از محلول بالای رسوب ( یا محلولی که پس از صاف کردن رسوب به دست می‌آید ) را در فاصله زمان های مساوی، روی یک قطعه کاغذ صافی با شناساگر سیانور پتاسیم آزمایش کرد. چنین شناساگری، شناساگر خارجی نامیده می‌شود.

 

 

انواع شناساگرها و کاربرد آن ها

 

فاصله تغییر PH و تغییر رنگ برخی از شناساگرهای مهم اسید و باز که متداولند و جدول زیر آمده است:

 

 

 
فاصله تغییر رنگ ph
رنگ اسید رنگ باز نوع شناساگر

لیتموس

8- 5/5

قرمز

آبی

 

آبی متیل

3/2- 2/1

قرمز

زرد

 

بنفش متیل

2- 0

زرد

بنفش

 

آبی تیمول

6/9-8

زرد

آبی

اسیدی

زرد متیل

4-9/2

قرمز

زرد

بازی

نارنجی متیل

4/4-1/3

قرمز

زرد

بازی

سبزبرموکرزول

4/5- 8 /3

زرد

آبی

اسیدی

قرمز متیل

3/6-2/4

قرمز

زرد

بازی

قرمز کلروفنول

4/6-8/4

زرد

قرمز

اسیدی

آبی برموتیمول

6/7-0/ 6

زرد

آبی
اسیدی

قرمزفنول

8-4/6

زرد

قرمز
اسیدی

قرمز خنثی

8-8/6

قرمز

زرد نارنجی
بازی

ارغوانی کرزول

9-4/7

زرد

ارغوانی
اسیدی

فنل فتالئین

6/9-8

بی رنگ

قرمز
اسیدی

تیمول فتالئین

5/10-3/9

بی‌رنگ

آبی
اسیدی

زرد آلیزارین

12-1/10

زرد

قرمز
بازی

 

انواع شناساگرها و کاربرد آن ها

موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:انواع شناساگرها و کاربرد آن ها, | 19:9 | نویسنده : علیرضا زینالپور |

بلورهای مایع و انواع آن

بلورهای مایع و انواع آن

معمولا مواد را به سه دسته: جامد، مایع و گاز می شناسیم اما موادی مانند سس مایونز ماده ای است که حالتی بین یک مایع و یک جامد دارد.

کریستال های مایع نیز نه کاملا مایع و نه کاملا جامد هستند،‌ از لحاظ فیزیکی مانند جریان مایعات به چشم می آیند، اما آن ها برخی از خواص جامدات بلورین را نیز دارند. کریستال های مایع را می توان کریستالی در نظر گرفت که  برخی یا همه نظم موقعیتی خود را از دست داده اند، در حالی که از نظر جهت گیری نظم خود را حفظ کرده است.

 

بین سال های 1850 تا 1888محققان در پژوهش هایی که در زمینه فیزیک، شیمی، زیست شناسی و پزشکی انجام می دادند، متوجه شدند که بعضی مواد در دماهای نزدیک به دمای ذوب شان رفتار عجیبی از خود نشان می دهند. آن ها مشاهده کردند که خواص نوری (اپتیکی) این مواد با افزایش دما به طور ناپیوسته ای تغییر می کند.

 

 

بلورهای مایع و انواع آن

 

مثلا استرین (stearin) در دمای 52 درجه سانتیگراد از جامد به مایع ابری شکل ذوب می شود و تا دمای 58 درجه سانتیگراد به صورت مایعی مات باقی می ماند و در دمای 5/62 به یک مایع شفاف تبدیل می شود. یا مثلا ترکیبات سنتز شده از کلسترول وقتی سرد می شوند، به رنگ آبی دیده می شوند. زیست شناسان در مواد بیولوژیکی مایع، رفتار ناهمسانگرد نوری که فقط در بلورها دیده می شود، مشاهده کردند.

 

 

بلورهای مایع و انواع آن

 

این مواد (بلورهای مایع) شامل مولکول های آلی هستند که دارای شکل طویل با یک ناحیه مرکزی ثابت و لبه های انعطاف پذیر اند.

مولکول ها در کریستال مایع لزوما از لحاظ مکانی منظم نیستند اما در سه جهت می تواند آزادانه جهت گیری داشته باشند.

رفتار ناهمسانگرد بلور مایع ناشی از طویل بودن مولکول های آن است. خواص فیزیکی مولکول ها در امتداد موازی با خواص فیزیکی در امتداد عمود بر صفحه مولکول متفاوت است. این تفاوت خواص مولکول ها باعث تفاوت خواص توده ای آن ماده (حجم زیادی از ماده) نیز می شود.

بلور مایع در سه نوع دسته بندی می شوند: Nematic نماتیک، Smectic اسماتیک و Cholesteric کایرال. 

برای بلورهای مایع یک جهت n به عنوان جهت مبنا در نظر می گیرند که مولکول ها تمایل دارند که در آن جهت قرار بگیرند.

 

بلور مایع نماتیک

تصور کنید تعداد زیادی خلال دندان در یک جعبه مستطیل شکل به صورت نامنظم قرار داده شده است. وقتی شما جعبه خلال دندان را باز می کنید خلال دندان ها تقریبا هم جهت هستند اما در یک امتداد نیستند یعنی زاویه بین هر خلال داندان با محوری معین با هم فرق می کند. (دقیقا در امتداد یک خط نیستند فقط جهت آن ها مثلا متمایل به شمال است). آن ها آزادانه حرکت می کنند اما جهت حرکت آن ها یکسان است. این نوع کریستال مایع به نماتیک معروف اند.

 

 

بلورهای مایع و انواع آن

 

بلور مایع اسماتیک

بلورهای مایع smectic نسبت به nematic این تفاوت را دارند که بعضی از آن ها دقیقا موازی با همدیگر هستند. بلورهای مایع smectic به دو نوع A و C تقسیم می شوند، نوع A همه مولکول ها در یک جهت تقریبا موازی اند اما نوع  C در هر ردیف مولکول ها موازی اند و جهت گیری ردیف ها با هم کمی متفاوت است. به شکل زیر توجه کنید.

 

بلورهای مایع و انواع آن

 

بلور مایع Cholestric

بلور مایع Cholestric ( نوع پیچیده بلور مایع نماتیک است) کایرال است. در این نوع بلور مایع اگر مولکول های چند لایه را در نظر بگیریم. مثل این است که در هر لایه یک نمونه از نماتیک را داریم به ترتیب که در لایه ها پیش می رویم جهت مولکول ها نسبت به لایه قبلی می چرخد تا در نهایت در لایه ی آخر به جهت لایه اول می رسد، به فاصله بین این چند لایه یک گام (pitch) می گویند. (مطابق شکل) جهت مولکول در لایه اول از A به B بوده و در لایه آخر نیز همین طور است.

 

 

بلورهای مایع و انواع آن

موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:بلورهای مایع و انواع آن, | 18:7 | نویسنده : علیرضا زینالپور |

اثر سطح بر سرعت واکنش

در این طرح درس اثر سطح ماده بر سرعت واکنش بررسی می شود که مواد واکنش دهنده جامد، مایع یا گاز است و کاتالیزور واکنش، جامد است.

 

چه اتفاقی می افتد؟

در حالتی که ماده خیلی ریز باشد، واکنش سریع تر اتفاق می افتد، به طور معمول واکنش یک پودر جامد نسبت به واکنش همان مقدار ماده اما به صورت توده (ماده متخلخل) سریع تر است. چون پودر دارای سطح بیشتری نسبت به توده ماده است.

اگر واکنش یک نمونه جامد با نمونه گازی شکل را در نظر بگیرید واکنش گاز با نمونه توده ای جامد به خوبی وقتی نمونه به صورت پودر است پیش نمی رود چون گاز به خوبی نمی تواند در نمونه توده ای نفوذ کند. مثلا نمونه توده ای (کپه ای) منیزیم نسبت به نمونه نواری آن تمایل کمتری برای سوختن دارد.

در زیر مثال هایی بیان می کنیم تا مطلب فوق را بهتر درک کنید.

 

کربنات کلسیم و اسید هیدروکلریک

در آزمایشگاه پودر کربنات کلسیم با اسید هیدروکلریک رقیق شده سریع تر واکنش می دهد تا وقتی که همان مقدار از کربنات کلیسم به صورت سنگ مرمر یا سنگ آهک باشد.

 

اثر سطح بر سرعت واکنش

 

تجزیه کاتالیزوری از پراکسید هیدروژن

تجزیه کاتالیزوری از پراکسید هیدروژن یکی دیگر از واکنش های آشنای آزمایشگاه است. اکسید منگنز (IV) اغلب به عنوان کاتالیزور استفاده می شود. در واکنش تجزیه زیر اگر کاتالیزور به صورت پودر باشد اکسیژن سریع تر آزاد می شود در مقایسه با وقتی که کاتالیزور به صورت توده باشد.

 

اثر سطح بر سرعت واکنش

 

مبدل های کاتالیزوری

مبدل های کاتالیزوری از قلزاتی مثل پلاتین، پلادیوم و رادیوم برای تبدیل ترکیبات سمی در اگزوز وسایل نقلیه استفاده می کنند تا مواد سمی را به مواد با ضرر کمتر تبدیل کنند مثلا در واکنش زیر هم مونوکسیدکربن و هم اکسید نیتروزن هر دو حذف می شوند.

 

اثر سطح بر سرعت واکنش

 

از آن جا که گازهای خروجی از اگزوز مدت زمان بسیا رکوتاهی با کاتالیزور در تماس اند، واکنش باید بسیار سریع اتفاق بیافتد. فلزات بسیار گران قیمتی به عنوان کاتالیزور استفاده می شوند، این فلزات به صورت یک لایه نازک روی ساختار لانه زنبوری سرامیکی به منظور به داکثر رساندن سطح تماس موثر قرار داده می شوند.

 

فقط زمانی یک واکنش اتفاق می افتد که ذرات گاز یا مایع با ذرات جامد برخورد کنند با افزایش سطح جامد احتمال این که برخورد رخ دهد، بیشتر می شود. واکنش بین فلز منیزیم و یک اسید رقیق مانند اسید هیدروکلریک را در نظر بگیرید، واکنش شامل برخورد بین اتم های منیزیم و یون های هیدروژن است:

 

اثر سطح بر سرعت واکنش

 

اثر سطح بر سرعت واکنش

 

توضیح عکس

هیدروژن می تواند به لایه خارجی از اتم ها اصابت کند نه به مرکز توده ماده

با همان تعداد اتم ها به تکه های کوچکتر تقسیم می شود، احتمال این که یون های هیدروژن به اتم منیزیمی برخورد نکند بسیار کم است (برای همه اتم های منیزیم برخورد رخ می دهد)

 

افزایش تعداد برخورد در هر ثانیه سرعت واکنش را افزایش می دهد


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:اثر سطح بر سرعت واکنش, | 16:3 | نویسنده : علیرضا زینالپور |

اثر غلظت بر سرعت واکنش

برای بسیاری از واکنش های مربوط به مایعات یا گازها، افزایش غلظت واکنش دهنده ها، سرعت واکنش را افزایش می دهد. در چند مورد استثناء افزایش غلظت واکنش دهنده ها تاثیر کمی بر روی سرعت واکنش می گذارد.

در زیر چند مثال می بینید که افزایش فشار در گاز غلظت آن را افزایش داده است.

 

روی و اسید هیدروکلریک

دانه های روی با اسید هیدروکلریک رقیق به آرامی واکنش می دهد اما وقتی غلظت اسید را زیاد کنیم، سرعت واکنش افزایش می یابد.

 

اثر غلظت بر سرعت واکنش

 

تجزیه کاتالیزوری پراکسید هیدروژن

جامد منگنز معمولا به صورت اکسیدی است و در واکنش ها به عنوان کاتالیزور استفاده می شود، جدا شدن اکسیژن (تجزیه آن) وقتی که غلظت آن زیاد باشد نسبت به وقتی که رقیق باشد بسیار سریع تر اتفاق می افتد.

 

 

اثر غلظت بر سرعت واکنش

 

واکنش بین محلول سدیم سولفات و اسید هیدروکلریک

واکنش بین محلول سدیم سولفات و اسید هیدروکلریک، واکنشی است که اغلب برای بررسی رابطه بین غلظت و سرعت واکنش استفاده می شود. وقتی یک اسید رقیق به محلول تیوسولفات سدیم اضافه می شود، رسوب زرد کم رنگ گوگرد تشکیل می شود.

 

 

اثر غلظت بر سرعت واکنش

 

هر چقدر که محلول تیوسولفات سدیم رقیق تر شود، زمان بیشتری طول می کشد تا رسوب شکل بگیرد.

 

مواردی که تغییر غلظت بر سرعت واکنش تاثیر می گذارد

این موارد بسیار پر استفاده و رایج است و در ک آن بسیار آسان است.

برخورد دو ذره: برای این که بین دو ذره واکنشی رخ دهد، باید دو ذره با هم برخورد کنند، یا هر دو محلولند یا یکی محلول و دیگری جامد است. هر چه غلظت آن ها بیشتر باشد، احتمال برخورد آن ها با هم بیشتر است.

 

اثر غلظت بر سرعت واکنش

 

واکنشی که برخورد یک ذره صورت می گیرد:

اگر در واکنشی یک ذره برخوردکننده باشد، تعداد برخوردهای موثر محدود و کم می شود یعنی بعضی از برخوردها مفید نیستند؛ آن چه که مهم است این است که کدام ذره انرژی کافی برای واکنش را دارد.

فرض کنید که در یک زمان از یک میلیون ذره یک ذره انرژی کافی برابر یا بیشتر از انرزی فعال سازی را دارد. اگر شما 10 میلیون ذره داشته باشید، 100 تا از آن ها واکنش می دهند، اگر 200 میلیون ذره در همان حجم داشته باشید، 200 تا از آن ها واکنش می دهد. بنابراین سرعت واکنش با دو برابر کردن غلظت دو برابر شده است.

 

مواردی که تغییر غلظت بر سرعت واکنش تاثیری ندارد

در نگاه اول به نظر می سد که این گفته بسیار عجیب و غیر ممکن است.

اما این مورد زمانی اتفاق می افتد که کاتالیزور تا حد ممکن واکنشی را تسریع بخشیده است.

فرض کنید مقدار کمی از کانالیزور جامد را در واکنشی استفاده می کنید و غلظت آن به اندازه کافی بالاست، طوری که سطح کاتالیزور کاملا با ذرات واکنش دهنده اشغال شده است، افزایش غلظت محلول تاثیری روی آن ندارد چون کاتالیزور حداکثر ظرفیت خود را تا قبل از افزایش غلظت به کار گرفته است و دیگر سطحی از کاتالیزور برای ذرات واکنش دهنده بیشتر نیست.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:اثر غلظت بر سرعت واکنش, | 15:1 | نویسنده : علیرضا زینالپور |

گیاه شناسی چیست؟

گیاه شناسی چیست؟

انسان از دیر باز به گیاهان  علاقه و وابستگی داشته است. از گیاهان به عنوان غذا، سرپناه، پوشش و مصالح برای ساختن ابزار بهره می گرفته. هم چنین توانسته است خواص شفا بخش بعضی گیاهان را تشخیص داده و لذا به پرورش گیاهان  برای کاربرد های دارویی مبادرت ورزد.

هم چنین مردم در عهد باستان زیبایی حیات گیاهی را درک مر کردند. مثلا آشوری ها حدود 4000 سال پیش باغ های زینتی در آسیای غربی داشتند.

اما ظاهرا یونانیان باستان نخستین کسانی بودند که مطالعه ی گیاهان را به شکل یک علم در پیش گرفتند.

 

گیاه شناسی به بیان ساده، مطالعه ی گیاهان است.  علم شناخت و مطالعه ی شکل هایی از حیات، که ریشه دارند و حرکت نمی کنند. البته چنان چه به مطالعه ی دقیق تر بپردازیم مشخص می گردد که چنین تعریفی تا حد بسیار زیادی ساده نگری است.

مثلا خزه ها جزو گیاهان به شمار می روند. اما این گیاهان در مراحل اولیه زندگی به صورت رشته هایی نخ مانند هستند که به برخی از آبزیان، یعنی جلبک ها شبیهند.

گیاه شناسی با حقایقی سرو کار دارد که برای ما اهمیت زیادی دارند. زیرا گیاهان برای حیات روی کره ی زمین ضروری اند. همه ی آن چه می خوریم، سبزی ها، گوشت یا حتی بستنی، مستقیم یا غیر مستقیم به گیاهان مربوطند. گذشته از این، گیاهان سبز، تنها منبع اکسیژن جو زمین هستند.

گیاه شناسی چیست؟

موضوعاتی که گیاه شناسان مطالعه می کنند گستره از کوچک ترین باکتری ها تا بزرگ ترین موجود زنده ی روی کره زمین یعنی درخت عظیم سکویا sequoia یا درخت غول را در بر می گیرد.

به طور کلی گیاه شناسی نیز مانند اکثر علوم رشد یافته است و چندین زمینه ی مجزا را در بر می گیرد من جمله رده بندی

در رده بندی گیاهان را طوری مرتب می کنند که بازتاب روابط تکاملی شبیه شجره ی خانوادگی باشد.

 

ریخت شناسی

به ساختار و شکل گیاهان می پردازد.

گیاه شناسی چیست؟

فیزیولوژی

فیزیولوژی گیاهی به کارکرد ها و فعالیت های درونی گیاهان می پردازد. یعنی این که گیاهان چگونه جوانه می زنند، رشد می کنند، تولید مثل می کنند و می میرند.

 

آسیب شناسی

بیماری گیاهی در کانون توجه گیاه شناسان است که در گیاه پزشکی تخصص دارند.

 

بوم شناسی

بوم شناسی گیاهی، زیر رشته ای در گیاه شناسی است که کنش های بین گیاهان و محیط پیرامونشان را بررسی می کند.

گیاه شناسی چیست؟

باکتری شناسی

ارگانیسم های تک یاخته که باکتری نام دارند، موضوع تحقیق در این رشته هستند. بعضی باکتری شناسان فرآیند های حیات باکتری ها و بعضی بیماری های باکتریایی مانند سل و کزاز و .... و دانشمندان دیگر نیز کاربردهای مفید باکتری ها، مانند نقش باکتری ها در تجزیه ی ماده ی آلی یا کاربرد باکتری ها در صنایع غذایی، انرژی و دارو سازی را مطالعه می کنند.

در سال های اخیر، باکتری شناسان توانسته اند باکتری ها را برای پاک سازی بی خطر و سریع پسماند های خطرناک به کارگیرند. با مهندسی ژنتیک، باکتری ها نقش بی شمار دیگری در پژشکی و صنعت پیدا کرده اند.

 

گیاه شناسی چیست؟

دیرین گیاه شناسی

دیرینه شناسان گیاهی با استفاده از بقایای سنگواره شده ی برگ ها، دانه ها، هاگ ها و مواد گیاهی دیگر، گیاهان کامل را چنان که در گذشته ی دور می روییدند بازسازی می کنند.

سپس با این سوابق سنگواره ای جزییات توالی تاریخی و تکاملی گیاهان روی کره ی زمین را مشخص می کنند.

 

 

گیاه شناسی اقتصادی

گیاهانی که ارزش اقتصادی مفید دارند یا گیاهانی که برای جامعه خطرناکند، در کانون توجه گیاه شناسی اقتصادی قرار دارند. گیاه شناسان اقتصادی به طور کلی گیاهانی را مطالعه می کنند که منابع مهم غذا، دارو، چوب و الیافند. بسیاری از کوشش هایی که برای افزایش محصول یا محدود کردن آفات انجام می شود، مستلزم داده های گیاه شناسان اقتصادی است.

گیاه شناسی چیست؟

قوم گیاه شناسی

قوم گیاه شناسان استفاده ی جوامع بدوی از گیاهان را هم در حال و هم در گذشته ی دور مطالعه می کنند. چنین پژوهش هایی، از تاریخ نحوه ی استفاده ی نیاکان ما از گیاهان، بینشی ارزشمند به ما می دهد. بسیاری از این دانشمندان می کوشند گیاهانی را که خواص دارویی نیرومند یا سایر خواص آن ها در طول قرن ها فراموش شده است را کشف یا دوباره کشف کنند.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:گیاه شناسی چیست؟, | 15:59 | نویسنده : علیرضا زینالپور |

سلول گیاهی

سلول گیاهی
پیکر گیاهان از  تعدادی اجزای میکروسکوپی کوچک به نام سلول ساخته شده است. به بیان دیگر سلول ها واحد های عملکردی و ساختاری پیکر گیاان و دیگر موجودات زنده هستند. اندازه  و شکل سلول ها بر اساس عملکردشان، شرایط محیطی و نیازهای موجودات زنده بسیار متنوع است. برخی از موجودات زنده تک سلولی هستند، در حالی که بقیه چند سلولی بوده و اشکال پرسلولی را تولید می کنند.
 

ساختار سلول

پروتوپلاست هر سلول دارای احزای پروتوپلاسمی و غیر پروتوپلاسمی می باشد. اجزای پروتوپلاسمی بیا زنده شامل هسته، میتوکندری، پلاستید ها، شبکه آندوپلاسمی، لیزوزوم ها، اسفروزوم ها، میکروتوبول ها و دستگاه گلژی هستند. در حالی که واکوئل ها، محصولات غذایی، محصولات ترشحی و محصولات زاید اجزای غیر پروتوپلاسمی را تشکیل می دهند.

سلول گیاهی

به طور کلی هر سلول گیاهی دارای سه ناحیه ی مشخص دیواره، سیتوپلاسم و هسته است.  مجموع هسته و سیتوپلاسم را پروتوپلاسم می گویند که توسط غشاء ظریفی به نام غشاء سیتوپلاسمی احاطه شده است.

یک سلول گیاهی با داشتن دیواره سلولی، پلاست ها و واکوئل حجیم در زمان بلوغ، از یک سلول جانوری قابل تشخیص است.

 

دیواره سلول

دیواره ی سلولی در اطراف سلول های گیاهی موجب استحکام و پایداری این سلول ها می شود. این دیواره از سه بخش متفاوت ساخته شده است. تیغه میانی،دیواره ی اولیه و دیواره ی ثانویه (پسین).

تیغه میانی

این لایه با رسوب مواد پکتیکی در زمان تقسیم سلول، تشکیل می شود. تیغه ی میانی از پکتات های کلسیم و منیزیم ساخته شده است. باحل شدن این لایه به کمک آنزیم های پکتولیتیک دو سلول از هم جدا می شوند. این فرایند طی رسیدن و نرم شدن میوه دیده می شود.

 
دیواره اولیه

نخستین لایه سلول، دیواره اولیه است که به وسیله پروتوپلاسم ساخته می شود.

سلول گیاهی

 دیواره ی اولیه در اطراف سلول های جوانی که در حال رشد طولی هستند، نازک و قابل کشش می باشد. این دیواره از همی سلولز، سلولز و ترکیبات پکتیکی ساخته شده است. همی سلولز و ترکیبات پکتیکی نسبت به سلولز درصد بیشتری ازترکیبات دیواره ی اولیه وجود دارد.

دردیواره ی اولیه، میکروفیبریل های سلولزی، در ابتدا بر محور رشد طولی سلولی عمود هستند و به تدریح با فشار تورژسانس ناشی از گسترش دستگاه واکوئلی به حالت مورب و در نهایت موازی با محور رشد سلول، قرار می گیرند.

دیواره اولیه، دیواره اصلی در اطراف سلول های مریستمی، سلول های پارانشیمی و ... می باشد.

 

دیواره پسین

این دیواره بعد از دیواره ی اولیه به طرف پروتوپلاسم تشکیل شده و موجب سختی دیواره می شود. این دیواره اساسا سلولزی است. میزان همی سلولز در این دیواره کمتر از دیواره اولیه است. در یک دیواره پسین متداول، سه لایه مشخص با آرایش متفاوتی از میکروفیبریل ها و ماکروفیبریل های سلولزی وجود دارد.

سلول گیاهی
تبادل مواد بین دو سلول مجاور به هم در مکان هایی به نام پلاسمودسماتا صورت می گیرد. در محل پلاسمودسماتا محتویات سلول های مجاورد در ارتباط با یکدیگر قرار می گیرند.

عملکرد دیواره، دیواره سلول در شکل دهی به سلول و حفظ محتویات سلولی دخالت دارد. دیواره با داشتن همی سلولز ها و در نتیجه تشکیل اولیگوساکارین دارای نقش ایمنی در برابر عوامل بیماری زا می باشد. دیواره همچنین در حفظ آب سلول نقش دارد.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:سلول گیاهی, | 17:8 | نویسنده : علیرضا زینالپور |

گیاه چیست؟

گیاه چیست؟

حیات، به گونه ای که ما  آن را می شناسیم، بدون گیاهان امکان پذیر نخواهد بود. تمام غذای ما، مستقیم و غیر مستقیم از گیاهان به دست می آید، همان طور که اکسیژنی که تنفس می کنیم و چوبی که با آن سر پناه می سازیم از گیاهان است.

 

گیاه واقعاً چیست؟

گیاه چیست؟
پاسخ این پرسش نیز مانند بیشتر پرسش ها بستگی دارد به این که آن را از کی بپرسید. یک بچه ی کوچک ممکن است پاسخ دهد:
«چیز سبزی که در یک جا می ماند.» ممکن است بتوان این را اضافه کرد که «غذایش را از نور خورشید می سازد.»
اما نظر علمی در مورد آنچه گیاه هست یا گیاه نیست، دیگر چندان ساده نیست.
 
گیاه شناسان با کمک میکروسکوپ های قوی و آزمون های پیشرفته ی شیمیایی بین ارگانیسم های «گیاه مانند» ی چون علف های دریایی و جلبک های سبز، و گیاهانی حقیقی چون خزه ها، سرخس ها، و گیاهان دانه دار چند تفاوت اساسی کشف کرده اند. نتیجه، تعریفی است بسیار پیچیده تر برای آن چه «گیاه» می نامیم.
 

بنابر تفکر علمی کنونی،

گیاه حقیقی ارگانیسمی چند یاخته ای (دارای یاخته های متعدد) است که یاخته هایش درون دیواره ی محکمی که از سلولز ساخته شده است، محصورند. این یاخته ها دارای رنگدانه های فتوسنتزی کلروفیل هستند که انرژی تابشی خورشید را می گیرند و مهار می کنند

شماری از گیاهان طی مسیر تکامل، این رنگدانه ها را از دست داده اند و انگل ارگانیسم های دیگر شده اند.

اما تعریف امروزی «گیاه» فقط این نیست؛ یاخته های یک گیاه باید بتوانند خود را به شکل ساختار های متفاوتی چون ریشه برای لنگر شدن در زمین، و ساقه برای استوار ماندن سامان دهند.

 

گیاهان حقیقی شیوه ی منحصر به فردی برای تولید مثل دارند:

آن ها دو مرحله ی متمایز زیستی، یا نسل های متناوب، را می گذرانند. در طی یکی از این نسل ها، گیاه یاخته های جنسی، یعنی تخمک و اسپرم، تولید می کند. در نسل دیگر، گیاه تولید هاگ می کند.

 

بسیاری از گیاهان تولید مثل رویشی نیز دارند؛ یعنی از یک قطعه ی ساقه یا ریشه ی گیاه مادر، گیاهان جدید به وجود می آورند.

 

بسیاری از گیاهان به هر شکل که حیات را آغاز کنند، تا زمان نامحدودی به رشد ادامه می دهند. این رشد نامحدود عمدتاً از طریق گسترش گیاه از نواحی رشدی خاصی به نام مریستم انجام می شود که در نوک ریشه ها، جوانه ها، و بعضی بخش های ساقه قرار دارد.

گیاه چیست؟

یک گیاه عادی در تمام دوره ی زندگی اش در یک محل ثابت می ماند. اما حرکت نکردن گیاهان افسانه ای بیش نیست. گل های بسیاری از گونه های گیاهی هر صبح باز می شوند و هر عصر بسته می شوند.

بعضی گیاهان در طول روز برگ هایشان را به دنبال حرکت خورشید در آسمان، می چرخانند. چنین حرکت هایی معمولاً آهسته تر از آن است که ما ببینیم، مگر با عکس برداری آهسته.

 

 

گیاه چیست؟

 

اما چند گیاه غیر عادی، مثل علف مگس گیر و گل ناز قادرند به سرعت حرکت کنند. علف مگس گیر برای به دام انداختن حشره در نوعی زندان گیاهی، برگ های دندانه دارش را به سرعت می ببندد. گل ناز در واکنش به تماس، ناگهان برگ هایش را جمع می کند و آویزان می شود.

 



موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:گیاه چیست؟, | 16:36 | نویسنده : علیرضا زینالپور |

ویژگی های اشعه کاتدی

در این مطلب می خواهیم به آزمایش هایی که بعد از کشف اشعه کاتدی روی آن انجام گرفت، بپردازیم و در نهایت ویژگی هایی اشعه کاتدی را که طبق همین آزمایش ها نتیجه گیری شد، بیان کنیم.

 

 آزمایش ها

1- جنس كاتد را تغییر دادند ولی در اشعه هیچ تغییری  مشاهده نمی شود. بنابراین ماهیت اشعه به جنس كاتد بستگی ندارد و تمام فلزات قابلیت تولید این اشعه را دارند.

 

ویژگی های اشعه کاتدی

 

2- جنس گاز داخل لوله را تغییر دادند ولی باز در ماهیت اشعه تغییری مشاهده نمی شود. بنابراین ماهیت اشعه به جنس گاز داخل لوله بستگی ندارد.

 

3- برای این كه ماهیت این اشعه هرچه بیشتر برای ما روشن گردد یک مانع بین دو الكترود در لوله قرار دادند و همان طور كه مشاهده می شود، در سمت آند سایه ای تشكیل می شود و این بدان معناست كه اشعه از كاتد خارج شده و به سمت آند حركت می كند. همچنین می توان نتیجه گرفت كه این اشعه به خط مستقیم سیر می كند.

ویژگی های اشعه کاتدی

4- یك فرفره پره دار را در مسیر اشعه قرار می دهیم.

مشاهده می شود كه مدتی پس از شروع به كار دستگاه فرفره شروع به حركت می نماید. این مطلب نشان دهنده آن است كه اشعه كاتدی حامل ذراتی است كه دارای انرژی هستند. این ذرات پس از برخورد با پره های فرفره انرژی خود را به پره ها می دهند به همین دلیل پره ها گرم شده و باعث گرم شدن گاز اطراف خود می شوند. گاز گرم شده درون لوله توسط جریان همرفتی به حركت درآمده و باعث چرخش فرفره می گردد.

 

5- جابه جایی کاتد در لوله تأثیری در جهت اشعه نداشته و اشعه به خط مستقیم سیر می نماید.

ویژگی های اشعه کاتدی

به محل قرار گرفتن آند توجه کنید

6- یک میدان الكتریكی قوی را از خارج لوله بر اشعه اثر می دهیم.

 

ویژگی های اشعه کاتدی

 

همان طور كه مشاهده می شود، اشعه در میدان الكتریكی به سمت قطب مثبت منحرف می شود. یعنی این كه دارای بار منفی است.

7- از خارج از لوله یک میدان مغناطیسی را بر اشعه اثر می دهیم.

 

ویژگی های اشعه کاتدی

 

اشعه در راستای عمود بر میدان در جهتی منحرف می شود كه از بار ذرات دارای بار منفی انتظار می رود. بنابراین اشعه از جنس ذرات باردار می باشد.

 

بنابراین با توجه به آزمایشات فوق نتیجه می گیریم:

 

1- اشعه کاتدی از ذراتی که دارای بار منفی هستند، تشکیل شده است. این ذرات را در سال 1874 الکترین نامیدند که در سال 1891 بعد از آزمایشات فوق این نام بهالکترون تغییریافت.

 

2- این اشعه به نوع فلز کاتد یا گاز داخل لوله بشتگی ندارد، بنابراین تمام مواد دارای الکترون هستند.

 بعدها از اشعه کاتدی در ساخت تلویزیون ها و مانیتورها استفاده شد، ساخت این تجهیزات شاید بدون اشعه كاتدی میسر نمی شد. به صفحه نمایش مانیتورها و  تلویزیون هایی که با استفاده از اشعه كاتدی تصویر را ایجاد می نمایند به طور اختصاری CRT گفته می شود كه مخفف  Cathode Ray Tube می باشد. در شكل نحوه عملكرد این نمایشگرها را می بینید.

 

ویژگی های اشعه کاتدی

 

با توجه به این که آزمایشات فوق نشان دهنده وجود ذره ای کوچکتر از اتم با بار منفی هستند، بنابراین نظریه اتمی دالتون به چالش بزرگی كشانده شده است، اما در علم برای اثبات وجود یک ذره  باید مختصات آن ذره یعنی جرم و مقدار بار آن تعیین گردد.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:ویژگی های اشعه کاتدی, | 15:33 | نویسنده : علیرضا زینالپور |

گردش خون و انتقال مواد در بدن

خون یک ناقل مایع می باشد که برای حفظ یک محیط مطلوب جهت رشد سلول های بدن، اکسیژن، آنزیم ها (پروتئین هایی که باعث تسریع و پیشبرد واکنش های شیمیایی در بدن می شوند) و سایر مواد غذایی حیاتی را به سلول می رساند. خون از یک سری سلول‌های تخصصی (گلبول‌های قرمز، گلبول‌های سفید و پلاکت‌ها) و پلاسما (مایعی که سلول‌های خون در آن معلق هستند) تشکیل شده است.

 

گردش خون و انتقال مواد در بدن

انتقال مواد

در دستگاه گردش خون سه نوع رگ وجود دارد.

1. سرخرگ: رگ هایی که خون را از قلب خارج می کنند، این رگ ها دیواره ای ضخیم و کلفت ماهیچه ای دارند.

2. سیاهرگ: رگ هایی که خون را به قلب باز می گردانند، این رگ ها دیوراه ای نازک دارند.

3. مویرگ: این رگ ها خون را بین اندام بدن پخش می کنند و موجب تبادل مواد بین خون در سلول ها می شوند.

 

دیواره ی سرخرگ دارای بافت پیوندی ارتجاعی ویژه ای است كه در مقابل فشار زیاد خون، باز شده و موجب گشاد شدن موقتی و موضعی سرخرگ می شود. این عمل ھنگام ورود خون از بطن چپ به سرخرگ آئورت اھمیت دارد.

گردش خون و انتقال مواد در بدن

ھنگامی كه این دیواره بر اثر خاصیت ارتجاعی خود به حالت اولیه برمی گردد، فشاری پدید می آورد كه موجب حركت خون در طول رگ می شود عمل تنگ و گشاد شدن جداره سرخرگ مانند موجی در طول سرخرگ حركت می كند كه نبض را به وجود می آورد.

نبض را می توان در محلی كه سرخرگ از روی استخوان عبور می كند لمس كرد.

 

 

 

 

حدود90 درصد مایعی كه از مویرگ خارج می شود دوباره باز می گردد اما 10 درصد باقی مانده. از طریق لنف به سیاھرگ باز می گردد.

لنف

ھمه ی موادی كه از خون وارد آب میان بافتی می شود به خون باز نمی گردد بنابراین خون سیاھرگ ھا غلیظ تر از سرخرگ ھاست. مایع باقی مانده در بین بافت ھا به وسیله ی رگ ھای لنفی دوباره به جریان خون باز می گردد كه لنف نام دارد.

وظایف لنف

- جمع آوری مایع بین سلول

- جذب مولکول های چربی از دیوراره روده

- تولید، ذخیره و جابه جایی گروهی از گلبول های سفید که به آن ها سنقولیت می گویند

 

گردش خون

ھمه مھره داران به جز ماھی ھا گردش خون مضاعف دارند.

بنابراین انسان دو نوع گردش خون دارد.

1- گردش خون عمومی : در گردش خون عمومی یا بزرگ، خون از بطن چپ خارج شده و پس از تبادل مواد با بافت ھا به دھلیز راست می ریزد.

2-گردش خون ششی: در این گردش خون از بطن راست خارج و به شش ھا وارد می شود و پس از تبادل گازھای تنفسی به دھلیز چپ می ریزد.

 

 

 

فشار خون

جریان خون در اندام ھا و قسمت ھای مختلف بدن به صورت پیوسته وجود دارد و مداوم است. كنترل مقدار جریان و فشار خون تحت كنترل اعصابی است كه از مغز با دیواره رگ ھا ارتباط دارد. تنظیم فشار خون از یک سو تحت كنترل اعصاب و مراكز عصبی و از سوی دیگر تحت تأثیر كلیه ھا و ھورمون ھا قرار دارد.

گردش خون و انتقال مواد در بدن

گیرنده ھای تنظیم فشار خون در قوس آئورت و سینوس ھای سرخرگ و با مركز تنظیم فشار خون كه در بصل النخاع قرار دارد در ارتباطند. مقدار فشار خون در افراد مختلف متفاوت است و در سنین بالا به علت رسوب بعضی از مواد در دیواره ی سرخرگ ھا افزایش می یابد.

 


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 31 خرداد 1392برچسب:گردش خون و انتقال مواد در بدن, | 7:30 | نویسنده : علیرضا زینالپور |

امواج رادیویی

امواج رادیویی

امواج رادیویی بسته به طول موج خود توسط انواع مختلفی از فرستنده ها  تولید می شوند. این امواج می توانند توسط ستاره ها، جرقه ها و رعد و برق ها نیز ایجاد شوند و به همین دلیل است که تداخل امواج رادیویی را در هنگام طوفان و رعد و برق احساس می کنید.

در بین طیف الکترومغناطیسی، امواج رادیویی کم ترین فرکانس (بزرگ ترین طول موج) را دارند و بیش ترین استفاده از این امواج در ارتباطات و مخابرات است.

 

امواج رادیویی به انواع زیر تقسیم می شوند:

امواج رادیویی

 

امواج رادیویی

امواج بلند: حدود 1 تا 2 کیلومتر طول موج

 

امواج رادیویی

امواج متوسط: حدود 100 متر طول موج که امواج AM را در برمی گیرد.

 

امواج رادیویی

امواج وی اچ اف VHF: کلمه VHF از "Very High Frequency" که به معنای فرکانس خیلی بالا است، گرفته شده است. این امواج دارای طول موج حدود 2 متر هستند. در این امواج می توانید ایستگاه های رادیویی FM استریو را پیدا کنید.

 
امواج رادیویی

امواج یو اچ اف UHF: این امواج از عبارت "Ultra High Frequency" که به معنای فرکانس بسیار بسیار بالاست، گرفته شده اند و طول موج آن ها کم تر از 1 متر است. این امواج برای ارتباطات رادیویی پلیس، ارتباطات تلویزیونی و رادیوهای صنایع هوایی ارتش مورد استفاده قرار می گیرند؛ البته امروزه ارتباطات ارتش به صورت دیجیتال و مخفی هستند.

 

خطرات امواج رادیویی:

اگر انسان بیش از اندازه در معرض امواج رادیویی و یا پارازیت های ماهواره ای قرار گیرد، امکان ابتلای او به انواع سرطان به ویژه سرطان خون، سقط جنین و اختلال های دیگر بدنی وجود خواهد داشت.

برخی از مردم از این که حتی دکل های با فرکانس بسیار پایین در بالای سر آن ها و یا محدوده منازل آن ها قرار دارد، نگران بوده و ادعا دارند که این موضوع، سلامتی آن ها را تحت تأثیر قرار می دهد.

 
امواج رادیویی

 

کاربردهای دیگر امواج رادیویی:

انرژی فرکانس رادیویی (RF)، بیش از 75 سال است که برای درمان‌های پزشکی بکار می‌رود.این موج‌ها بیشتر در جراحی‌های کوچک و انعقاد خون بکار می‌روند.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:امواج رادیویی, | 13:11 | نویسنده : علیرضا زینالپور |

اشعه گاما

 

اشعه گاما
 

در طیف امواج الکترومغناطیس، اشعه گاما دارای بیش ترین فرکانس و بیش ترین مقدار انرژی حمل شده است. این اشعه توسط داغ ترین و پر انرژی ترین ستارگان مانند ستارگان نوترونی و پالسارها (تپ اختر)، انفجار ابر نو اخترها، نواحی اطراف حفره سیاه موجود در کهکشان ساتع می شود. در روی کره زمین می توان این اشعه را در انفجارهای هسته ای، رعد و برق و واپاشی رادیواکتیو برخی مواد یافت. این امواج از درون بسیاری مواد عبور می کنند و برای این که جلوی آن ها را بگیرید، بایستی از موادی مانند سرب یا بتون استفاده کنید.

 

اشعه گاما

نقاط نورانی، اشعه های گامای ساتع شده از انفجار را نشان می دهد.

موارد استفاده:
به دلیل این که اشعه گاما می تواند سلول های رنده را از بین ببرد، از این اشعه برای نابود کردن سلول های سرطانی استفاده می شود تا بدون نیاز به جراحی های سخت و خطرناک به این هدف دست پیدا کنند. این عمل، رادیو درمانی نام دارد و به دلیل این که سلول های سرطانی نمی توانند مانند سلول های سالم که حتی در معرض اشعه گاما می توانند خود را درمان کنند، زنده بماند. البته در این درمان، مقدار مناسب اشعه حتما باید در نظر گرفته شود.
 

اشعه گاما

 
هم چنین اشعه گاما میکروب ها را نابود کرده و غذا را استریل کرده و می تواند باعث تازه ماندن آن به مدت طولانی شود. از این اشعه برای استریل کردن لوازم پزشکی نیز استفاده می شود.

 

خطرات:

این اشعه در صورت کنترل نشدن می تواند باعث تخریب سلول ها شده و انواع مختلفی از سرطان را به وجود آورد. بنابراین چنین اشعه ای برای جنین بسیار مضر بود و ممکن است باعث جهش های ژنتیکی شود.

 

شناسایی اشعه گاما:

برخلاف نور معمولی و اشعه ایکس، اشعه گاما را نمی توان توسط آینه، به دام انداخت و یا منعکس کرد. طول موج این اشعه آن قدر کوتاه است که می توانند از میان فضای بین اتم های یک آشکارساز عبور کنند. معمولا آشکارسازهای اشعه گاما شامل توده های بلوری بسیار متراکمی هستند.

هنگامی که اشعه گاما از این مسیر عبور می کند، با الکترون های موجود در بلور برخورد می کنند. این پدیده که پراکندگی کامپتون نام دارد، در جایی که یک اشعه گاما به الکترون برخورد کرده و انرژی خود را از دست می دهد، به وجود می آید. در این برخورد، ذراتی به وجود می آیند که می توان با سنسورهای خاصی آن ها را کشف کرد.

 

از زمان بیگ بنگ (انفجار بزرگ)، انجارهای اشعه گاما، پرانرژی ترین و نورانی ترین حوادث الکترومغناطیسی بوده اند و در 10 ثانیه می توانند انرژی ای آزاد کنند که خورشید در منظومه شمسی در طول عمر 10 بیلیون ساله خود می تواند آزاد کند.

اگر ما بتوانیم اشعه های گاما را ببینیم، آسمان شب را عجیب و نا آشنا خواهیم یافت!

در شکل های زیر تصاویری از انفجار اشعه گاما ایجاد شده توسط یک حفره سیاه که در 12.8 بیلیون سال نوری از ما متولد شده است، می بینیم.

 

 

اشعه گاما

 


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:اشعه گاما, | 13:9 | نویسنده : علیرضا زینالپور |

سلسله گیاهان

نخستین گیاهان حقیقی «دوزیستان» بودند. این گیاهان اولیه، مانند دوزیستان جهان جانوری، می توانستند روی خشکی ادامه ی حیات دهند، اما برای باروری یا تولید مثل جنسی به رطوبت خارجی نیاز داشتند. آن ها به وسیله ی هاگ ها تکثیر غیر جنسی نیز داشتند.

سلسله ی گیاهان

امروز نمایندگان باقی مانده ی این گروه باستانی، گروهی کثیر از گیاهان ریز به نام خزه ها هستند. این گروه شامل خزه های آشنا و علف جگری ها و علف شاخی هاست که کمتر شناخته شده اند.

سلسله ی گیاهان
این گیاهان فاقد ریشه، ساقه، و برگ حقیقی هستند و پوشش مومی (کوتیکول) برای جلوگیری از خشک شدن بافت هایشان ندارند. فقط تعداد انگشت شماری از خزه ای ها هستند که ارتفاعشان از چند سانتی متر بیشتر می شود، و اکثر آن ها در مکان های مرطوب یا خیس روی زمین می خزند.

 

نخستین گیاهان آوندی در سنگواره هایی به قدمت حدود 405 میلیون تا 410 میلیون سال پیش، دیده شده اند. بافت آوندی آن ها شامل یک ستون محکم مرکزی است که آب و عناصر غذایی ضروری را درون گیاه هدایت می کند و در ضمن گیاه را استوار نگه می دارد. به بیان دقیق تر، آب از میان یک شبکه ی سخت پشتیبان، متشکل از یاخته های مرده به نام آوند چوبی عبور می کند، در حالی که غذا از میان آبکشی از یاخته های زنده به نام آوند آبکش می گذرد.

سلسله ی گیاهان

گیاهان آوندی برای لنگر کردن خودشان به خاک و گرفتن رطوبت و عناصر غذایی غیر آلی از آن، ریشه های حقیقی دارند. یک یا چند ساقه، اندام های فتوسنتزی اصلی، یعنی برگ ها، را حمایت می کنند. یک کوتیکول مومی اندام های بالای سطح زمین را می پوشاند تا به محافظت گیاه از خشک شدن کمک کند.

سلسله ی گیاهان
کوتیکول یک پیشرفت تکاملی بزرگ بود؛ زیرا گیاهان آوندی را قادر ساخت در مقایسه با خزه ای ها، بسیار دورتر از آب ادامه ی حیات دهند.
البته این پوشش ضخیم مانع تبادل گازها بین گیاه و هوای پیرامون آن می شد. راه حل این مسئله، پیدایش روزنه ها بود. روزنه ها منفذهای کوچکی در کوتیکول هستند که یک جفت یاخته ی نگهبان که مثل «درهای» متحرک کند، آن ها را در بر گرفته است. روزنه ها باز و بسته می شوند تا به گیاه کمک کنند بین نیاز به نگهداری آب و نیاز به اکسیژن و کربن دی اکسید جوّ، توازنی برقرار کند.
 

این گیاهان آوندی اولیه مانند خزه ای های بی دانه بوده و برای باروری متکی به آب بودند. از جمله نمایندگان امروزی این گروه «سنگواره های زنده ای» چون دم اسبیان، پنجه گرگیان و سرخس ها هستند.

 

 

سلسله ی گیاهان
سلسله ی گیاهان
سلسله ی گیاهان

دم اسبیان

پنجه گرگیان

سرخس ها

 

خزه ها، دم اسبیان، و سرخس های عظیم  حدود 350 میلیون سال پیش ظهور نخسیتن جانوران مهره دار خشکی خوشامد گفتند. حدود 100 میلیون سال بعد، دایناسورها در جنگل های سرخس های نخلی و مخروطیان ابتدایی ( نخستین گیاهان دانه دار جهان) جولان می دادند.

 

دانشمندان معتقدند نخستین گیاهان گلدار یا نهاندانگان تا زمانی در دوره ی کرتاسه، یعنی حدود 127 میلیون سال پیش، پدیدار نشدند.

 نهاندانگان اولیه شامل درختان راش، انجیر، و ماگنولیا و نیز بسیاری گونه های دیگر بودند که طی زمان ناپدید شده اند. شکوفایی بزرگ تر نهاندگان حدود 100 میلیون سال پیش رخ داد. و تعجبی ندارند که گونه های متعدد جدیدی از حشرات نیز در همان زمان به وجود آمدند. در آن هنگام نیز مثل حالا، اکثر گیاهان گلدار برای گرده افشانی یا باروری گل هایشان به حشرات وابسته بودند. نهاندانگان نیز با گل هایی به رنگ های خیره کننده و عطرها و شهدهایشان این حشرات «دلداده» را به سوی خود جذب می کردند.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:سلسله ی گیاهان, | 13:7 | نویسنده : علیرضا زینالپور |

فرایندهای حیات

گیاهان نیز مانند تمام موجودات زنده باید برای ادامه ی حیات، رشد، و تولید مثل غذا بگیرند و تنفس کنند. گیاهان، برخلاف جانوران، قادرند از طریق فرایند فتوسنتز غذای خود را بسازند. غذایی که طی فتوسنتز درست می شود، بعد در تنفس مصرف می شود. تنفس فرایندی است که طی آن اکسیژن و قند واکنش می کنند تا انرژی شیمیایی و کربن دی اکسید تولید شود.

 

فرایندهای حیات
بنابراین گیاهان، مانند جانوران، باید اکسیژن داشته باشند تا ادامه ی حیات دهند. یاخته های گیاهی، بیشتر اکسیژن خود را به شکل یک فراورده ی فرعی فتوسنتز تولید می کنند. در واقع، یاخته های گیاهی در مدت دوره های فتوسنتز فعال، مقدار زیادی اکسیژن اضافی بیرون می دهند. اما این تولید اکسیژن با توقف فتوسنتز متوقف می شود، مثلاً در شب هنگام. آن گاه، یاخته های گیاهی برای ادامه ی تنفس باید اکسیژن را از جوّ بگیرند.
 

گیاهان از راه روزنه ها، یعنی منفذهای ریزی که در پوشش های کوتیکول مومی برگ ها و ساقه ها قرار دارند، «نفس می کشند». گیاهان علاوه بر «دَم» با اکسیژن، باید کربن دی اکسید «بازدم» کنند، درست مثل جانوران. وقتی در زمان های خشکی گیاهان ناچار می شوند روزنه هایشان را ببندند، تنفس آن ها بسیار کند می شود و ممکن است سرانجام متوقف شود.

 

گیاهان به انواع عناصر غذایی غیر  آلی یا کانی ها نیز نیاز دارند و این ها را معمولاً از طریق ریشه ها از محیط پیرامون خود جذب می کنند. این عناصر غذایی شامل مقادیر نسبتاً زیادی نیتروژن، گوگرد، فسفر، پتاسیم، کلسیم، و منیزیم و نیز مقادیر اندکی  آهن، مس، منگنز، روی، مولیبدن، بور، کبالت، و کلر است. این چهارده عنصر غذایی خاک، هماره با کربن، هیدروژن، و اکسیژنِ جوّ، عناصر اصلی تغذیه ی گیاه را تشکیل می دهند. فقدان هر یک از این عناصر می تواند رشد گیاه را متوقف کند.

 

رشد

بیشتر انرژی تولید شده در تنفس به مصرف نگهداری بافت های کنونی گیاه می رسد. وقتی شرایط خوب باشد، انرژی اضافی به مصرف رشد می رسد. گیاه شناسان معمولاً دو نوع رشد گیاهی را تشخیص می دهند: اولیه و ثانویه.

فرایندهای حیات

رشد اولیه

فرایندی است که در آن ساقه ها و ریشه های گیاه طویل می شوند و بافت های خاصی مثل برگ ها به وجود می آیند. این کار با افزوده شدن یاخته های جدید در نواحی خاصی به نام مریستم های انتهایی انجام می شود که در نوک ریشه ها، شاخه ها، و جوانه ها قرار دارند (جانوارن، برعکس، یاخته های جدید ضمن رشد به تمام بدن افزوده می شوند).

 

رشد اولیه در گیاهان در واقع برابر تحرک در جانوران است. گیاهان به جای بلند شدن و راه رفتن، طول بدنشان را دراز می کنند تا به نواحی جدید منابع آب، نور خورشید، و عناصر غذایی دسترسی پیدا کنند.

 

 

 

رشد ثانویه

فرایندی است که طی آن گیاهان چوبی ضخامت ریشه ها، شاخه ها، و ساقه ها یا تنه هایشان را افزایش می دهند. رشد ثانویه از تولید یاخته های جدید در استوانه ای از بافت به وجود می آید که مریستم جانبی یا لایه ی زاینده نام دارد. لایه ی زاینده در فصل رشد هر سال، یاخته های جدید تولید می کند. این چرخه ی سالانه ی رشد را به شکل حلقه ی مشخصی در برش عرضی ساقه ی چوبی بعضی گیاهان یا در تنه ی درخت می توان دید. هر حلقه مربوط به یک سال رشد است.


موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:فرایند های حیات, | 13:5 | نویسنده : علیرضا زینالپور |

ساختمان دستگاه دفع ادرار

دستگاه دفع ادرار شامل كلیه، میزنای، مثانه و مجرای دفع ادرار است.

كلیه ھا اعضای اصلی دستگاه دفع ادرار ھستند كلیه ھا در پشت معده و روده ھا به دیواره ی پشتی شكم چسبیده اند. به ھر كدام یک سرخرگ وارد و از آن یک سیاھرگ خارج می شود. خون وارد شده به كلیه تصفیه شده و مواد غیر لازم و سمی آن گرفته می شود و خون تصفیه شده از طریق سیاھرگ خارج شده به قلب باز می گردد.

 

دستگاه دفع ادرار
 
از ھر كلیه یک لوله به نام میزنای نیز خارج می شود این لوله مواد اضافی و سمی گرفته شده از خون كه ادرار نام دارد را  درون كیسه ای به نام مثانه که در پایین شكم قرار دارد، می ریزد.

ھر كلیه انسان حدود 11 سانتی متر طول و 6 سانتی متر ضخامت دارد. و وزن تقریبی آن حدود 150 گرم است. بافت كلیه شامل دو بخش مركزی و محیطی است.

بخش مركزی ھرمی شكل است. قاعده ھر ھرم به طرف قشر كلیه و رأس آن به طرف مركز كلیه(لگنچه) است.

بخش قشری كلیه، بخش مركزی را در برگرفته است و در آن انشعابات سرخرگ ھا، سیاھرگ ھا و قسمت اصلی نفرون ھا دیده می شود.

 

دستگاه دفع ادرار
 

تشکیل ادرار

تشکیل ادرار نتیجه سه پدیده تراوش، بازجذب و ترشح مواد در نفرون هاست. حجم زیادی از مواد موجود در پلاسمای خون، با عبور از گلومرول به درون کپسول بومن تراوش می کند. در دنباله لوله اداری بسیاری از این مواد بازجذب می شوند. بازجذب به صورت فعال و غیرفعال صورت می گیرد. بازجذب از هدر رفتن مواد مفید مانند گلوکز و سدیم جلوگیری می کند. در طول لوله ادراری بعضی مواد مانند یون های هیدروژن و پتاسیم و بعضی داروها مانند پنی سیلین از خون گرفته و به داخل لوله وارد می شوند( ترشح) به این شکل ترکیب نهایی ادرار مشخص می شود.

 

دستگاه دفع ادرار

کلیه ها از عوامل مهم تنظیم تعادل اسید – باز در بدن هستند. به این ترتیب که با کم و زیاد کردن دفع هیدروژن و دی کربنات، از اسیدی یا قلیایی شدن خون جلوگیری می کنند.

پس از تشکیل، ادرار توسط  نای به مثانه می ریزد و دیواره مثانه کشیده می شود. اگر کشش دیواره مثانه به حد خاصی برسد گیرنده های آن تحریک می شوند و با ارسال پیام های عصبی به نخاع انعکاس تخلیه مثانه را فعال می کنند.

 

نفرون

واحد عمل یا تصفیه كلیه نفرون نام دارد. تمام اعمال كلیه توسط نفرون صورت می گیرد. ھر نفرون در واقع یک لوله سر بسته و ته باز طویلی است كه جدار آن از یک لایه سلول درست شده است. سر نفرون شكل قیف و جسمک كلیوی نام دارد كه از یک پرده ی دو لایه خارجی به نام كپسول بومن و كلافه ی مویرگی به نام گلومرول ساخته شده است.

پلاسمای خون تحت تأثیر فشار خون، از صافی كپسول بومن عبور می كند و وارد مجرای آن می شود. این عمل را تراوش می گویند

بسیاری از مواد مانند آب، گلوكز، اسیدھای آمینه وارد نفرون می شود اما جداره ی نفرون مواد لازم را دوباره باز جذب می كند این عمل از طریق انتشار و انتقال فعال صورت می گیرد اما مواد زاید و اضافی درون نفرون باقی می ماند كه به صورت ادرار وارد لگنچه كلیه می شود. از ھر 100 سی سی پلاسمایی كه وارد نفرون می شود 99 سی سی آن دوباره بازجذب می شود و فقط 1 سی سی آن به ادرار تبدیل می شود.

 

تعادل آب در بدن

  • تركیب خون دائما با خوردن مواد غذایی و دفع مواد تغییر می كند اما این تركیب نباید از حد معینی خارج شود. اگر تغییر زیاد باشد موجب مرگ سلول ھا می گردد.
  • كلیه ھا تنظیم محیط داخلی را بر عھده دارند. آب اضافی از طریق ادرار دفع می شود و مواد سمی خون مانند اسید اوریک، آمونیاک از طریق ادرار دفع می شوند.
  • بنابراین كلیه ھا تنظیم كننده ی محیط داخلی بدن ھستند.

موضوعات مرتبط: مطالب علمی ، ،
برچسب‌ها:

تاريخ : پنج شنبه 30 خرداد 1392برچسب:دستگاه دفع ادرار, | 13:2 | نویسنده : علیرضا زینالپور |

.: Weblog Themes By SlideTheme :.